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Abstract—In this paper, a modularized modeling framework
is designed to enable a dynamics-incorporated power system
scheduling under high-penetration of renewable energy. This
unique framework incorporates an adapted hybrid symbolic-
numeric approach to scheduling models, effectively bridging
the gap between device- and system-level optimization models
and streamlining the scheduling modeling effort. The adaptabil-
ity of the proposed framework stems from four key aspects:
extensible scheduling formulations through modeling blocks,
scalable performance via effective vectorization and sparsity-
aware techniques, compatible data structure aligned with dy-
namic simulators by common power flow data, and interoperable
dynamic interface for bi-direction data exchange between steady-
state generation scheduling and time-domain dynamic simulation.
Through extensive benchmarks with various usage scenarios, the
framework’s accuracy and scalability are validated. The case
studies also demonstrate the efficient interoperation of generation
scheduling and dynamics, significantly reducing the modeling
conversion work in stability-constrained grid operation towards
high-penetration of renewable energy.

Index Terms—Power system scheduling, symbolic modeling,
stability constraints, open-source tool, power system digital twin,
high-penetration renewable energy.

I. INTRODUCTION

THE societal goals of the decarbonized power grid drive
the increase in renewable penetration. As a result, var-

ious renewable energy resources and dedicated management
techniques are needed. To facilitate research and development
needs, CURENT Large-scale Testbed (LTB) platform was
developed as a virtual power grid for researchers to prototype
and validate their algorithms [1]. This LTB platform includes
a dynamics simulator ANDES [2], a distributed messaging en-
vironment DiME, and a geographical visualizer AGVis [3] to
enable dynamic device modeling and intuitive understanding
of grid status.
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As the power grid evolves to integrate a high share
of renewable energy sources, the complexity of scheduling
operations increases, demanding more advanced tools and
methodologies for efficient generation scheduling and produc-
tion cost modeling [4]. Optimal Power Flow (OPF) becomes
crucial in this context, serving as a fundamental scheduling
scheme to address the intricate dynamics of production cost
modeling. The research community has responded to these
challenges by developing a variety of OPF tools. As the
basic scheduling scheme for the power market, OPF has
been well-addressed by the research community and led to
various tools. MATPOWER, an extensive and rigorous OPF
solution, was developed and released as an open-source tool
[5]. Later, as Python gained more popularity in the scientific
computation community, MATPOWER was ported to Python
as PYPOWER [6]. Pandapower was developed to cover distri-
bution networks with improved performance using the just-in-
time compilation technique [7]. To include multi-period oper-
ation and planning, along with coupled multi-energy systems,
PyPSA is developed and validated [8]. Later, in Julia, a flexible
modeling framework, Sienna, formally known as SIIP, was
developed to facilitate the modeling and simulation of energy
systems [9], [10]. As open-source projects, the aforementioned
tools benefit the research community by facilitating various
usage scenarios and further development. In addition to the
research tool development, the stability-constrained scheduling
problem has drawn attention. In low-inertia systems, a lo-
cational rate-of-change-of-the-frequency (RoCoF) constrained
unit-commitment model ensures frequency stability under con-
tingencies by embedding frequency change limits and leverag-
ing virtual inertia to support the frequency [11]. For AC/DC
hybrid grids, a short-term voltage stability-constrained unit-
commitment model mitigates voltage instability by retaining
dynamic reactive power resources through a decomposition-
based approach [12]. Furthermore, an ensemble sparse oblique
regression tree approach enhances voltage stability in dispatch
operations, converting stability margins into interpretable rules
within an optimal power flow model [13]. These strategies
advance stability-constrained scheduling, accommodating the
evolving needs of renewable-rich power systems.

The economic and reliable operation of the power grid
requires an adaptable scheduling modeling framework to lever-
age grid flexibility resources. In this context, the scheduling
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tool might not only need to collect dynamics information in
optimization formulation, but also broadcast scheduling results
to the dynamics engine for dynamics performance assess-
ment. For example, variable generation providing deliverable
secondary frequency regulation is developed and validated
through scheduling-dynamics co-simulation [14]. Furthermore,
the small real-time generation dispatch interval turned out to
be inferior to adaptive frequency control [15]. In addition,
electric vehicles that provide the deliverable provision of
secondary frequency regulation are modeled using state space
modeling and validated through a co-simulation of real-time
economic dispatch and time-domain simulation [16]. Inverter-
based resources (IBR) providing inertia support through vir-
tual synchronous generator (VSG) control is developed and
assessed in both economics and dynamics [17]–[19]. A unified
framework is developed to incorporate a comprehensive set of
stability constraints into power system optimization problems,
where the constraints are formulated in the second-order cone
form and validated through dynamics simulations [20]. In
these studies, researchers made considerable manual efforts
to implement the algorithms and verify the results in both
scheduling and dynamic simulations.

As discussed above, the scheduling modeling challenges
emerging today include: 1) incorporating new dispatchable
devices and elements introduced by IBRs; 2) integrating
dynamics information into scheduling to ensure stability; and
3) addressing modeling gaps between the device level and
the system scheduling level. To address these challenges, this
paper presents the development of an adaptable scheduling
modeling framework, called AMS, which also complements
the CURENT LTB with scheduling functionality, thereby
enabling scheduling-dynamics co-simulation and facilitating
the creation of a full-timescale digital twin for the power grid
with significant renewable energy.

Unlike [2], which used a hybrid symbolic-numeric ap-
proach for the time-domain transient simulation, this work
uses this hybrid symbolic-numeric approach for the generation
scheduling optimization with dynamics stability constraints
and interfaces. In transient stability simulation, the prob-
lem is typically formulated as a set of differential-algebraic
equations. The modeling efforts focus on the device-level,
such as synchronous generator GENROU and renewable gen-
erator REGCA. This work, however, extends this concept
to a scheduling modeling framework primarily targeting the
generation scheduling optimization problems. Compared to
the transient stability modeling framework, this one not only
involves device-level modeling but also scheduling-level for-
mulation, such as IBRs with virtual synchronous genera-
tors providing virtual inertia services. This hybrid symbolic-
numeric approach for the generation scheduling optimization
provides unique interfaces with dynamics models and param-
eters which can facilitate stability-constrained optimization.
Specifically, in transient stability simulation, the formulation is
explicitly defined, and efforts are concentrated on device-level
modeling. In contrast, scheduling requires both device-level
modeling and experimentation with different formulations to
achieve economic optimality. In comparison with tools for
power flow analysis and transient stability simulation, such

as PSD-BPA [21] and PSASP [22], this work mainly solves
the generation scheduling optimization problems such as unit
commitment and economic dispatch with stability constraints
without modeling differential algebraic equations. This work
models the stability constraints through the linear constraints
of dynamics parameters such as inertia, damping, etc. The
major contributions of this paper are summarized below.

1) Adapted hybrid symbolic-numeric approach for schedul-
ing modeling and simulation. Unlike the approach used
in transient stability modeling frameworks, the adapted
approach bridges the modeling gap between the device-
level and scheduling-level, and thus allows for rapid
prototyping of IBRs grid services provision.

2) Proposed a modular design to streamline the scheduling
modeling process, improving efficiency and ensuring
compatibility with a wide range of IBRs and renewable
energy sources.

3) Developed a dynamics interface to facilitate interop-
eration with transient simulators and development of
transient stability-constrained scheduling algorithms.

4) Conducted case studies with various development sce-
narios to demonstrate the adaptability, including exten-
sibility, scalability, compatibility, and interoperability.

5) Provided an open-source, ready-to-use implementation
to enable further research and practical applications.

The remainder of this paper is organized as follows. Section
II outlines the design philosophy and innovative aspects of
the framework design; Section III elaborates on the modeling
foundations of the framework and demonstrate the modeling
of a frequency stability-constrained scheduling; Section IV
examines the framework’s adaptability, focusing on its exten-
sibility, scalability, compatibility, and interoperability; Section
V performs case studies to provide credibility and demon-
strate the versatile applications including high-penetration IBR
scenarios; and Section VI concludes this paper with potential
future directions.

II. DESIGN PHILOSOPHY

This section first elaborates on the development considerations
to ensure adaptability. Next, the adapted hybrid symbolic-
numeric modeling approach is proposed for scheduling mod-
eling.

A. Development Considerations

To achieve an adaptable scheduling modeling framework,
the following issues should be considered.

1) Compatibility: Compatibility with external tools is es-
sential for interoperation with power grids that integrate more
emerging technologies. Specifically, the interoperation with
transient simulators requires compatibility from file format to
simulation manipulation. Thus, the scheduling tool is expected
to have two features to support efficient interoperation with the
transient engine. These features are a compatible file format
and an automated data exchange application programming
interface.
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Fig. 1. Architecture of the adapted hybrid symbolic-numeric approach for
scheduling modeling and simulation.

2) Vectorization: Vectorization is a common and useful
parallelism technique for improving data manipulation effi-
ciency. It enables efficient utilization of modernized computing
hardware by continuously storing and accessing numerical
data. In the scheduling formulation, the implementation of
multiple data in one instruction [23] can be applied to data
storage and the numerical optimization formulation.

3) Modularity: An appropriate modular design can be
beneficial for the developer to use and maintain the tool in
the long-run perspective. It can save considerable effort after
the initial development stage, although it usually takes longer
in the early stage due to the frequent necessary refactoring
[24].

4) Usability: Numerical modeling can result in unignorable
learning costs for development and maintenance due to its non-
intuitive nature, although it is widely adopted in power system
simulation and usually has good computation performance.
The descriptive modeling method means using descriptive
codes for modeling. This approach was introduced in transient
stability simulation aiming at reducing development efforts for
new dynamics devices [2].

B. Adapted Hybrid Symbolic-Numeric Approach

In our previous work ANDES [2], the hybrid symbolic-
numeric modeling is proposed to reduce the dynamics device
modeling efforts. In contrast, scheduling modeling involves
not only emerging devices, but also their integration into new
formulations. Thus, an adapted hybrid symbolic-numeric mod-
eling approach is proposed to bridge the gap between device-
level and scheduling-level modeling. It symbolizes device-
level elements and renders them as accessible elements for
problem formulation at the scheduling-level.

Figure 1 illustrates the architecture of the hybrid symbolic-
numeric framework adapted for scheduling modeling. In the
proposed approach, the gray block represents the hybrid mod-
eling approach, while the green block represents the symbolic
layer, and the yellow block represents the numeric layer. In
the modeling part, the symbolic approach is primarily used to
formulate the problem intuitively. In addition, the numerical
approach helps in areas where the symbolic one is less applica-
ble, such as in building system-level matrices. Upon modeling
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Fig. 2. Modularized modeling scheme for scheduling.

the problem, the symbolic layer parses the descriptive schedul-
ing models with corresponding numerical counterparts. Lastly,
the numeric layer solves the resulting numeric optimization
model to perform the simulation. This approach is effective in
integrating IBRs into scheduling models, ensuring compatible
handling of their unique characteristics and dynamics. More
details of the proposed framework will be further elaborated
in the following section.

III. MODELING FRAMEWORK FOUNDATION FOR
STABILITY-CONSTRAINED SCHEDULING

This section presents the foundation of the proposed schedul-
ing modeling framework. It provides a brief overview of the
modularized scheduling modeling scheme and then elaborates
on the essential functionalities of the framework. Finally,
it demonstrates the integration of virtual inertia scheduling
(VIS) into real-time economic dispatch (RTED) using the pro-
posed framework as an example of the stability constrained-
scheduling.

A. Modularized Scheduling Modeling Scheme

Figure 2 illustrates the modularized scheduling modeling
scheme of the framework. First, the parameters and variables
are encapsulated in devices. Second, the system matrices are
calculated and stored in the matrix processor. Following it, de-
vices and system matrices are rendered as accessible elements
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for scheduling routines. In the scheduling routines, optimiza-
tion models are defined given the descriptive codes. Next,
the framework yields a solvable numerical model through
symbolic processing. Finally, the optimization model can be
solved using the solver library.

B. Memory-Efficient Data Storage: Direct and Referential
Methods

For minimal memory usage, two data storage patterns are
developed for value providers, namely, direct storage and
referential storage. Direct storage means that the object has
its value attribute v for storing data. In contrast, referential
storage means that the object has attributes that point to the
data provider rather than having its value attribute. A lazy
evaluation pattern is implemented in referential storage with a
property method v, where the value is presented when calling
and cleared afterward. This way avoids duplicate data storage
because the referenced data are delivered upon calling only.

The structure of the descriptive scheduling modeling scheme
is as follows. First, parameters and variables are defined within
devices as the basic system data source. Second, the system
matrices are calculated and stored within the system.

C. Device-Level Data Management

A power system Device provides source data and defines
algebraic variables, and the attributes of devices are accessible
by scheduling routines. The Parameter, sourced or calculated
from input, describes a power system device. The Variable,
particularly algebraic variable in the optimization problem, is
a solvable element within a power system device. These are
then symbolized by the symbolic processor to further describe
the scheduling routine.

To alleviate development and maintenance efforts, AMS
revised the basic device modeling elements, as described
in Section III-A of [2], deprecating the expression code of
algebraic variables and state variables e str. Additionally,
the defined topology data can be easily reused in scheduling
routine. Consequently, development efforts at the device level
focus on grid operational data, such as generation costs,
reserve requirements, and load profile.

D. Efficient Handling of System Matrices in Scheduling

In scheduling formulation, system matrices refer to the
matrices commonly used by multiple scheduling routines,
such as generation shift factors GSF, generator connection
matrix Cg, susceptance matrix B, and load connection matrix
Cl. These system matrices are calculated and stored in the
MatProcessor, and it is similar to a Device where its attributes
are also accessible by scheduling routines.

As an exemplification of modular design, the encapsulation
of MatProcessor can avoid repetitive computations because the
system matrices are the same for different scheduling routines
for one single case.

E. Assistive Services for Intricate Scheduling Formulations

An assistive procedure, Service is developed to describe
formulations or math operations that are complicated for
the symbolic methods. As symbolic operation brings about
expensive computation costs on a large scale, complicated
operations can be formulated with numerical coefficients. For
example, the ramping constraints of a synchronous generator
in a multi-period scheduling can be formulated in this manner.
In multi-period economic scheduling, a service RampSub is
introduced to build the coefficients matrix and thus to simplify
the ramping constraints expression. Additionally, element-wise
operations can be done similarly, for instance, by introducing
a service NumOpDual to calculate the total zonal regulation
up requirements through element-wise multiplication, compli-
mented by output reshaping.

F. Symbolic Code Generation

The symbolic processing in AMS can be quite simpli-
fied leveraging existing optimization languages. As discussed
in previous subsections, Constraint and Objective have the
e str attribute to store the descriptive code as strings. In
the symbolic layer as depicted in Figure 1, the symbolic
processor translates these strings using the operation of regular
expressions [25]. This translation process generates executable
code by substituting symbols with their corresponding value
providers.

The symbolic processor, a predefined function within a
scheduling routine, is inherited by all newly developed rou-
tines. The symbolic code generation is case-independent, en-
suring efficient processing regardless of of the size of the case.

G. Optimization Model Construction

Within a scheduling routine, all elements of an optimiza-
tion model are first evaluated using the generated code and
then assembled into a solvable optimization problem. An
optimization model includes elements such as RParam, Var,
Service, Constraint, and Objective. A RParam indicates the
source model and elements. A Var defines an optimization
variable in the size of the source model. A Constraint provides
the descriptive expressions and constraint type. An objective
stores the descriptive objective expressions and the type.
After symbolic processing, all these elements are converted
into executable code. By sequentially evaluating this code,
the executable optimization counterpart is generated. Finally,
these components are assembled into a solvable optimization
problem.

H. Automated Documentation Generation

Auto-generated documentation is crucial for disseminating
the source code and its clearly elaborated functionality.

In scheduling routines, human-readable documentation are
essential for power system researchers to be aware of the for-
mulations and methods that they are utilizing. AMS presents
formulations by utilizing the tex name symbol attribute of
the modeling elements. Consequently, documentation tools can
automatically generate detailed source files and render them
in conjunction with modeling efforts.
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I. Descriptive Modeling Instance for Stability-Constrained
Scheduling

Power system stability is categorized into five categories:
resonance stability, converter-driven stability, rotor angle sta-
bility, voltage stability, and frequency stability [26]. This sub-
section presents a frequency stability-constrained generation
scheduling model with inertia and damping constraints. The
goal is to maintain frequency nadir above the under-frequency
load shedding thresholds and ensure the RoCoF follows grid
standards after a N-1 generation trip contingencies. In the
future, more stability indices such as short-circuit ratio can
be investigated using the proposed framework.

min
∑
g∈ΩG

(
c2P

2
g + c1Pg + c0ug + cUg P

U
g,r + cDg PD

g,r

)
(1)

s.t.
∆DU =

∑
g∈ΩG

PU
g,r (2)

PU
g,r + Pg ≤ Pg,∀g ∈ ΩG (3)

Eqns. (1) - (3) describe a portion of the RTED scheduling.
In these equations, the upper subscripts U and D repre-
sent RegUp and RegDn, respectively. The lower subscript g
represents a generator and the lower subscript r represents
regulation. The objective function (1) minimizes the total cost
of power generation and regulation reserves. Eqn (2) describes
the RegUp reserve requirement, while (3) imposes the physical
limits on the generators.

Following the problem formulation, we can descriptively
develop the RTED model. Listing 1 presents a simplified de-
scriptive formulation of RTED as an example. The descriptive
RTED model is conceptually divided into two main sections:
the data section and the model section. The data section defines
the relevant data and necessary services. RParam pmax defines
the data source of the maximum generator output. Service
dud performs multiplication on two inputs and includes return
functions that reshape the output size, serving as the ∆DU

in (2). In the model section, optimization formulations are
defined with descriptive code. Var pg defines the power output
variable, and it represent Pg . Additionally, Var pru and prd
specify the regulation up and regulation down reserve, as they
represent PU

g,r and PD
g,r. Constraint rbu sets the RegUp reserve

requirement of (2), and rru establishes the RegUp reserve
source of (3). In the last, Objective obj defines the objective
function of (1) to minimize the total cost of generation and
reserve. In the definition of rbu and obj, there is a e str that
give a symbolic description of the equations. This symbolic
representation can then be processed into an executable opti-
mization model.

Upon completing the RTED modeling, a demonstrative
scheduling of RTED with VIS is given in (4)-(8). Note that
these formulations aim to illustrate the streamlined scheduling
modeling process, while detailed formulations can be found
in [17], [19]. In this formulation, decision variables are the
generator output Pg , IBR virtual inertia Mr, and IBR virtual
damping Dr. For simplicity, here we show the additional VIS
formulations, but omit the standard RTED formulations.

1 class RTED:
2 def __init__(self, system, config):
3 ...
4 # --- Data Section ---
5 self.pmax = RParam(
6 info=’Gen maximum active power’,
7 name=’pmax’, tex_name=r’p_{G, max}’,
8 unit=’p.u.’, model=’StaticGen’,
9 no_parse=False,)

10 self.dud = NumOpDual(
11 u=self.pdz, u2=self.du,
12 fun=np.multiply, rfun=np.reshape,
13 rargs=dict(newshape=(-1,)),
14 name=’dud’, tex_name=r’d_{u, d}’,
15 info=’RegUp reserve requirement’,)
16 # --- Model Section ---
17 self.pg = Var(
18 info=’Gen active power’, unit=’p.u.’,
19 name=’pg’, tex_name=r’p_{g}’,
20 model=’StaticGen’, src=’p’,
21 v0=self.pg0)
22 self.pru = Var(
23 info=’RegUp reserve’, unit=’p.u.’,
24 name=’pru’, tex_name=r’p_{r,u}’,
25 model=’StaticGen’, nonneg=True,)
26 self.prd = Var(
27 info=’RegDn reserve’, unit=’p.u.’,
28 name=’prd’, tex_name=r’p_{r,d}’,
29 model=’StaticGen’, nonneg=True,)
30 self.rbu = Constraint(
31 name=’rbu’, is_eq=True,
32 info=’RegUp reserve balance’,
33 e_str=’gs@mul(ug,pru)-dud’,)
34 self.rru = Constraint(
35 name=’rru’, is_eq=False,
36 info=’RegUp reserve source’,
37 e_str=’mul(ug,pg+pru)-mul(ug,pmax)’,)
38 cost = ’sum(mul(c2,power(pg,2)))’
39 cost += ’+sum(c1@(t*pg))+sum(ug*c0)’
40 cost += ’+sum(cru*pru+crd*prd)’
41 self.obj = Objective(
42 name=’obj’, unit=’$’,
43 info=’total cost’,
44 sense=’min’, e_str=cost)

Listing 1. Descriptive RTED modeling.

In these Eqns, ΩG and ΩR are all generators and all IBR,
respectively. The subscripts g and r represent the generator
and IBR, respectively. The superscripts M and D represent
virtual inertia and damping, respectively. fg is the generation
cost. Mr and Dr are the upper bounds of virtual inertia and
damping, respectively. Mreq and Dreq are the virtual inertia
and damping reserve requirements, respectively, and can be
determined by the desired transient performance.

min

 ∑
g∈ΩG

fg (Pg) +
∑
r∈ΩE

(
cMr Mr + cDr Dr

))
∀g ∈ ΩG,∀r ∈ ΩR

(4)

s.t.
Mr ≤ Mr (5)

Dr ≤ Dr (6)∑
r∈ΩR

Mr = Mreq (7)
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1 class VISBase:
2 def __init__(self):
3 ...
4 self.M = Var(
5 info=’Emulated inertia (M=2H)’,
6 name=’M’, tex_name=r’M’, unit=’s’,
7 model=’VSG’, nonneg=True,)
8 self.D = Var(
9 info=’Emulated damping’,

10 name=’D’, tex_name=r’D’, unit=’p.u.’,
11 model=’VSG’, nonneg=True,)
12 self.Mreq = Constraint(
13 name=’Mreq’, is_eq=True,
14 info=’Emulated inertia requirement’,
15 e_str=’-gvsg@M+dvm’,)
16 self.Dreq = Constraint(
17 name=’Dreq’, is_eq=True,
18 info=’Emulated damping requirement’,
19 e_str=’-gvsg@D+dvd’,)
20
21 class RTEDVIS(RTED, VISBase):
22 def __init__(self, system, config):
23 RTED.__init__(self, system, config)
24 VISBase.__init__(self)
25 gcost = ’sum(mul(c2,power(pg,2)))’
26 gcost += ’+sum(c1@(t dot pg))+ug*c0’
27 rcost = ’+sum(cru*pru+crd*prd)’
28 vsgcost = ’+sum(cm*M+cd*D)’
29 self.obj.e_str = gcost+rcost+vsgcost

Listing 2. Integration of VIS into RTED as an example of stability-constrained
scheduling.

∑
r∈ΩR

Dr = Dreq (8)

Listing 2 demonstrated the virtual inertia support provisions
in RTED, using the developed framework. Lines 4-11 define
two non-negative decision variables associated with the device
”VSG”. Next, lines 12-19 define two constraints describing
the required emulated inertia and damping. Then, lines 21-
24 combine the existing RTED with the newly added lines
4-19, forming the new RTED-VIS scheduling model. Lines
25-29 rewrite the objective functions to include the cost of
virtual inertia service. In this example, we develop a block
VISBase and then assemble it with RTED as the scheduling
routine RTED-VIS. Along with the necessary input data, the
developed RTED-VIS can be used for economic analysis
study. Further details on the development can be found in the
documentation provided in the Code Availability section.

IV. ADAPTABILITY OF THE MODELING FRAMEWORK

An adaptable modeling framework is essential in power
systems to meet the evolving demands of scheduling modeling.
First, such a framework should be extendable, allowing for
easy integration of new grid technologies and energy products.
Second, scalability is crucial to ensure reliable performance
from rapid prototyping to large-scale applications. Next, a
data structure compatible with transient engines is also a
prerequisite for integration with a transient simulator. Lastly,
interoperation with transient simulators is the key to the
development of scheduling algorithms that integrate stability
constraints.

This section elaborates on the adaptability of the proposed
framework from the following four aspects, namely extensi-
bility, scalability, compatibility, and interoperability.

1 class ESD1Base:
2 def __init__(self):
3 self.cpe = Constraint(
4 name=’cpe’, is_eq=True,
5 info=’Select pce from pg’,
6 e_str=’ce@pg-zce-zde’,)
7 SOCb = ’mul(En,(SOC-SOCinit))’
8 SOCb += ’-t dot mul(EtaC,zce)’
9 SOCb += ’+t dot mul(REtaD,zde)’

10 self.SOCb = Constraint(
11 name=’SOCb’, is_eq=True,
12 info=’ESD1 SOC balance’,
13 e_str=SOCb,)
14
15 class RTEDES(RTED, ESD1Base):
16 def __init__(self, system, config):
17 RTED.__init__(self, system, config)
18 ESD1Base.__init__(self)

Listing 3. Integration of energy storage into RTED.

A. Extensible Scheduling Formulation

The modular design in AMS ensures an extensible modeling
framework to easily model new dispatchable elements. As
illustrated in Figure 2, modeling efforts are organized into two
parts, device-level and scheduling-level. Within this structure,
new devices can be developed either by using Parameter
and Variable or by reusing device-level modeling blocks.
For more details on the device-level modeling blocks, see
[2]. Similarly, new scheduling models can be derived from
existing scheduling models by adding new elements. In this
way, developers can reuse scheduling modeling blocks, and
thus save modeling and maintenance efforts.

For instance, the energy storage model can be integrated
into RTED by developing a modeling block. Eqns (9) - (10)
describe the two common constraints in an energy storage
model. In the equations, zc,E and zd,E are decision variables
of the charging and discharging power of energy storage
model. SOC is the decision variable of state of charge
(SOC). SOCinit is the parameter of initial SOC, and En

is the capacity. t is the RTED time interval, while ηc and
ηd are parameters of charging and discharging efficiency. CE

is a coefficient matrix that identifies which static generator
corresponds to the energy storage model.

CEPg − zc,E − zd,E = 0 (9)

En(SOC −SOCinit)− tηczc,E + tηdzd,E −SOC = 0 (10)

Listing 3 illustrates the integration of energy storage into
RTED, where ESD1Base is simplified to show only two con-
straints. Following the declaration of ESD1Base, the RTEDES
model, which includes the energy storage model, can be easily
derived from RTED. The above code snippet demonstrates
the extensibility of AMS. Additionally, the streamlined pro-
totyping scheme relieves the researcher’s manual efforts in
algorithm development and maintenance, benefiting from the
descriptive modeling feature and existing modeling blocks.

B. Scalable Performance

As discussed in Subsection III-F, the modeling framework
itself is scalable because it relies on the generated code and
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Fig. 3. Data overlap between scheduling study and dynamic simulation.

thus is case-independent. However, two concerns can still arise
when the system size is large. First, the construction of the
optimization model is highly dependent on the problem scale.
Second, the computation performance is capped by the used
solver, because the solver library is the one that solves the
optimization problem.

Regarding the first concern, sparse techniques can be ap-
plied to ensure performance at large-scale. For instance, the
connection matrices in power systems are usually highly
sparse, thus enabling the effective use of sparse matrix storage
and operations [27]. Additionally, the scheduling problem can
be carefully formulated to reduce redundant variables and
constraints.

As for the second concern, besides the continuous advance-
ment of optimization theories and implementations, power
system researchers can select appropriate solvers and meth-
ods given the problem’s characteristics. Furthermore, they
are skilled in developing dedicated scheduling algorithms to
further simplify the problem with domain knowledge.

C. Compatible Data Structure

Figure 3 illustrates a demonstrative data structure of
scheduling and transient simulators and their overlap. Reserve
requirement data are used mainly in scheduling studies, while
generator control, such as excitation systems and power system
stabilizers, is used in transient simulations. Additionally, cer-
tain topology data is shared between scheduling and transient
simulators. For instance, line parameters, including resistance
r, reactance x, conductance g, susceptance b, and short-term
line limit rateb are involved in both optimal power flow study
and transient simulation. In addition, the long-term line limit
ratea is used in scheduling analysis, whereas the emergency
line limit ratec accounts for transient contingencies.

Recent emerging techniques introduce new dispatchable
elements that also merit transient simulation to ensure stability.
For example, virtual inertia scheduling has been discussed to
mitigate low-inertia issues by using IBR to provide inertia
and damping control. Virtual inertia and damping are not only
decision variables in the scheduling study, but also dynamics
parameters in transient simulation. Thus, a compatible data
structure is a prerequisite for interoperability between transient
and scheduling simulators.

In AMS, the input data is defined in different devices,
including power flow data and scheduling data. Power flow
data are the basic input data including bus, line, generator,
and load. Scheduling data, such as generator cost and reserve

requirement, can be included as needed. In transient simula-
tion, the input file includes power flow data and dynamics data.
PSSE defines power flow data as RAW file and dynamics data
as DYR file. ANDES defines power flow data and dynamics
data in different devices and stores them in an XLSX file.

In conclusion, AMS employs a device-based input data
format to ensure a compatible data structure, where power
flow data bridges the input files of scheduling and transient
by defining the system topology.

D. Interoperable Dynamics Interface

Effective interoperation between the scheduling and tran-
sient components is essential to integrate transient stability
constraints into scheduling algorithms. There are two scenarios
of interoperation, depending on the direction of data flow: 1)
Scheduling to transient (Send): In this scenario, the scheduling
simulator sends its results to the transient simulator for TDS;
2) Dynamic to scheduling (Receive): In this scenario, the
scheduling simulator collects dynamics results to solve the
optimization problem.

For example, when developing a new frequency regulation
product, high-fidelity validation through TDS is required. In
this case, setting points and reserve values are obtained from
the scheduling simulation, while the next-round scheduling
also takes the system states as input. A compatible interface
must accommodate both types of data exchange.

Additionally, there is a gap between DC-based scheduling
formulations and AC-based TDS. In scheduling, it is assumed
that there are no losses in the transmission network, consid-
ering the relatively large X/R ratio. This reduces modeling
complexity and ensures that the solving time complies with
industry requirements. In TDS, however, AC-based power
flow equations are a superset of system differential-algebraic
equations and must be satisfied at each time step. In practice,
two intuitive DC-AC conversion approaches are introduced: 1)
Incorporate loss factors that account for active power losses
[28]; 2) Preserve the regulating power from the generator
output range and re-solve the ACOPF to get the generator
output power [16].

As a result, AMS develops a dynamic interface to store the
mapping information between scheduling and transient. With
vectorized design, data is exchanged efficiently in parallel.

E. Full Timescale Digital Twin for Power Grid

The compatibility and interoperability with transient simu-
lators allow for the further advancement of a ”virtual power
grid”. The state estimation techniques provide both accuracy
and resolution, and the dynamic interface enables smooth
integration of transient stability assessment. Consequently,
achieving a full timescale digital twin for power grids is
possible through the scheduling-centric virtual power grid
with dynamics-integration. This approach is advantageous for
systems with high penetration of IBRs, as it ensures that
their unique characteristics and dynamics are modeled and
integrated into the scheduling.
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V. CASE STUDIES

This section presents extensive case studies that validate
and demonstrate the capabilities of the developed modeling
framework. First, the accuracy of the framework is vali-
dated across various cases using OPF. Second, the compu-
tation time for three distinct types of problems is analyzed
in various cases. Next, the extensible scheduling modeling
scheme is demonstrated through the rapid prototype of RTED
considering virtual inertia scheduling of IBRs. Finally, the
framework’s interoperability with the transient simulator is
illustrated through the developed RTED with virtual inertia
scheduling and its scheduling-dynamics co-simulation. More
detailed usage instructions and tutorials for the implemented
AMS can be found in the online documentation referenced in
Section VI.

All case studies in this section are performed on a laptop
with Apple M3 Pro processors and 36 GB RAM. The en-
vironment for AMS is deployed in Python-3.10.0 with the
following packages: ANDES-1.9.1 [2], CVXPY-1.5.3 [29],
[30], pandapower-2.14.11, GUROBI-11.0.3, MOSEK-10.2.6,
and PIQP-0.4.2 [31]. Furthermore, MATPWOER-7.1 is in-
stalled in Matlab-R2024b.

A. Benchmark of Optimization Results

TABLE I
BENCHMARK OF OPF COSTS

Cost [$] AMS pandapower MATPOWER

IEEE
14-Bus 7,642.59 7,642.59 7,642.59

IEEE
39-Bus 41,263.94 41,263.94 41,263.94

PEGASE
89-Bus 5,733.37 5,733.37 5,733.37

IEEE
118-Bus 125,947.88 125,947.88 125,947.88

NPCC
140-Bus 810,033.37 810,016.06 810,033.37

WECC
179-Bus 411,706.13 411,706.13 411,706.13

IEEE
300-Bus 706,292.32 706,292.32 706,292.32

PEGASE
1354-Bus 1,218,096.86 1,218,096.86 1,218,096.86

PEGASE
2869-Bus 2,386,235.33 2,386,235.33 2,386,235.33

GOC
4020-Bus 793,634.11 793634.11 793,634.11

EPIGRIDS
5658-Bus 1,195,466.12 1195466.12 1,195,466.12

EPIGRIDS
7336-Bus 1,855,870.94 1,855,870.94 1,855,870.94

This subsection compares the performance of linearized
OPF across various case sizes, given its fundamental role
in production cost analysis and scheduling modeling. Table
I lists the objective values obtained from this benchmark

0 10 20 30 40 50 60
Time [ms]

IEEE 300-Bus
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NPCC 140-Bus

IEEE 118-Bus

PEGASE 89-Bus

IEEE 39-Bus

IEEE 14-Bus
AMS Symbolic Processing
AMS Numeric Evaluation
AMS GUROBI
AMS MOSEK
AMS PIQP
pandapower
MATPOWER

Fig. 4. Computation time of OPF on small-scale cases.

study. It is important to note that for the GOC 4020-Bus,
EPRIGRIDS 5658-Bus, and EPIGRIDS 7336-Bus cases, the
line rate was set to a high value to alleviate line flow con-
straints; otherwise, the OPF would fail for both pandapower
and MATPOWER. Additionally, for the NPCC 140-bus case,
the value from pandapower is slightly lower than those from
AMS and MATPOWER. The cases come from MATPOWER
[5], NPCC and WECC economic data [32], and IEEE PES
Power Grid Benchmarks [33]. To ensure input consistency
across the different tools, MATPOWER case files in m-file
format are used as inputs for both AMS and MATPOWER.
Then, the built-in file format converter converts the AMS grid
to a PYPOWER format dictionary. This conversion facilitates a
direct comparison by aligning the data structures used by each
tool. Finally, pandapower can perform the OPF analysis using
the converted case. Overall, the consistent results achieved
by AMS, MATPOWER, and pandapower across these varied
test cases not only validate the credibility of the developed
scheduling modeling framework, but also demonstrate its
reliability and accuracy, affirming its effectiveness for use in
production cost analysis and power system optimization.

B. Benchmark of Computation Performance

Figure 4 shows the computation time of OPF using small
scale cases. In the bar chart, the gray bar labeled ”AMS
Symbolic Processing” represents the time spent on symbolic
processing, while the wheat-colored bar ”AMS Numeric Eval-
uation” represents the time spent on system matrices calcu-
lation and optimization model construction. The orange bar
labeled ”AMS GUROBI” represents the optimization-solving
time using the GUROBI solver. Similarly, the red bar labeled
”AMS MOSEK” and the pink bar labeled ”AMS PIQP”
represent the time used by the solvers MOSEK and PIQP,
respectively. Regarding the baselines, the blue and green bars
represent the running time of MATPOWER using solver MIPS
and pandapower using solver PIPS, respectively. The results
for AMS, pandapower, and matpower are the average time
consumed over ten repeat tests. When comparing the AMS
results of different solvers, it shows that: 1) the symbolic

This article has been accepted for publication in IEEE Transactions on Sustainable Energy. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2025.3528027

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on January 10,2025 at 21:34:23 UTC from IEEE Xplore.  Restrictions apply. 



PREPRINT FOR IEEE TRANSACTION ON SUSTAINABLE ENERGY 9

0 1000 2000 3000 4000
Time [ms]

EPIGRIDS 7336-Bus

EPIGRIDS 5658-Bus

GOC 4020-Bus

PEGASE 2869-Bus

PEGASE 1354-Bus
AMS Symbolic Processing
AMS Numeric Evaluation
AMS GUROBI
AMS MOSEK
AMS PIQP
pandapower
MATPOWER

Fig. 5. Computation time of OPF on large-scale cases.

0 200 400 600 800 1000 1200
Time [ms]

WECC 179-Bus

NPCC 140-Bus

IEEE 39-Bus

IEEE 14-Bus

PJM 5-Bus
AMS Symbolic Processing
AMS Numeric Evaluation
AMS GUROBI
AMS MOSEK
AMS PIQP
pandapower
MATPOWER

Fig. 6. Computation time of 24-hour load level scanning using OPF.

processing time is independent of the case sizes and remain
to be very limited portion, and 2) the computation time for
AMS mainly comes numerical evaluation and optimization
solving. The comparison between AMS and other tools shows
that the adapted hybrid symbolic-numeric approach is efficient
and scalable.

Figure 5 further validates the computation time of OPF
on large-scale cases. When comparing the results of AMS
across difference-size cases, one can see that the time spent
on symbolic processing is almost negligible. Additionally, the
comparison between AMS and other tools further confirms the
advantages of the adapted hybrid symbolic-numeric approach.
The results in Figures 4 and 5 show that the consumed time
increases more slowly than the case sizes, which indicates the
good scalability of the developed framework.

Note that given the modular design, the symbolic processing
and numeric evaluation process runs only once. After suc-
cessful initialization, the optimization problem can be revised
directly by updating the parameters. Figure 6 shows the
benchmark computation time for 24-hour load level scanning
using OPF, where the 24 load level factors are synthesized
from the corresponding system operators’ hourly load data.
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Fig. 7. Computation time of multi-period scheduling.
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Fig. 8. Computation time distribution for multi-period economic dispatch and
unit commitment using a 31,777-bus case.

In this graph, the symbolic processing is still negligible and
the numeric evaluation process takes much less time than the
solver running time. Furthermore, the comparison between
AMS and other tools confirms the improved performance
resulting from the modular design.

Concerning different problem types, Figure 7 presents the
computation time of multi-period economic scheduling and
unit commitment [34], [35], where the time is calculated from
the average time of ten repeat tests. The cases considered
here include a 24-hour scheduling with 1-hour time intervals.
Economic dispatch remains a quadratic programming problem,
while unit commitment becomes a mixed-integer programming
problem.

Next, an ultra-large case is used to further validate the multi-
period economic dispatch and unit commitment. The case,
sourced from [36], includes 31,777 buses, 4,664 generators,
41,573 transmission lines, and 5 intervals. Figure 8 illustrates
the time distribution of solving the economic dispatch and unit
commitment of this ultra-large case. As shown in the figure,
the time spent on symbolic processing remains negligible.

Comparison of AMS across different cases and types of
problems further confirms the scalability of the proposed
modeling framework. Besides, the high-performance solver
library gives AMS a competitive capability for solving large-
scale multi-period scheduling.

This subsection benchmarks the computational performance
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Fig. 9. AGVis visualization of revised IEEE 39-bus system with IBRs

1 # --- Scheduling Simulation ---
2 sp = ams.load(’ieee39_uced_vis.xlsx’)
3 sp.RTEDVIS.run()
4 # --- Interoperation ---
5 sa = sp.to_andes(addfile=’ieee39_vis.xlsx’)
6 sp.RTEDVIS.dc2ac()
7 sp.dyn.send(adsys=sa, routine=’RTEDVIS’)
8 # --- Dynamic Simulation ---
9 sa.PFlow.run()

10 sa.TDS.run()
11 sp.dyn.receive(adsys=sa, routine=’RTEDVIS’)

Listing 4. Example code of RTEDVIS cosimulation. Imports are omitted for
simplicity.

of the developed framework, using different size cases and
problem types. The benchmarks clearly confirm the frame-
work’s capability for complex problem types and good scala-
bility for large-scale cases.

C. Validating IBR providing virtual inertia services through
the interoperation with other LTB packages

This subsection demonstrates the validation of IBR provid-
ing virtual inertia services through the interoperability of the
proposed scheduling modeling framework, interfacing with the
transient simulator ANDES and the geographical visualizer
AGVis.

IEEE 39-bus system is used where four synchronous gen-
erators are replaced with IBRs:

• Case1: All generators are synchronous generators.
• Case2: Four synchronous generators are replaced with

IBR under VSG control, where the penetration level is
40%.

• Case3: Replaced VSG-controlled IBR are under virtual
inertia scheduling, where the penetration level is 40%.

The example code of scheduling-dynamics co-simulation for
RTED-VIS is illustrated in the listing 4. In the co-simulation,
there are three parts, namely scheduling simulation, interoper-
ation, and transient simulation. In the Scheduling Simulation
part, first, case system is loaded from the input file as shown by
line 2. Second, the developed scheduling routine RTED-VIS
can be solved as shown in line 3. Moving on to the Interoper-
ation part, the corresponding dynamic case is converted from
the scheduling case with a supplemented dynamic input file as

TABLE II
SCHEDULING RESULTS OF VIRTUAL INERTIA AND DAMPING

Generator M [s] D [MW/Hz]
Case1 Case2 Case3 Case1 Case2 Case3

IBR1/SG1 8.40 8.40 10.00 0.50 0.50 1.00

IBR2/SG6 6.96 6.96 10.00 0.50 0.50 1.00

IBR3/SG8 4.86 4.86 10.00 0.50 0.50 1.00

IBR4/SG9 6.90 6.90 8.34 0.50 0.50 0.83

shown in line 5. Subsequently, line 6 converts the DC-based
results to AC as discussed in Section IV-D. Upon successful
conversion, the dynamics interface can send the scheduling
results, including generator output, virtual inertia, and damping
to the corresponding dynamic devices. Regarding the Dynamic
Simulation part, lines 9 and 10 solve the AC power flow and
TDS, respectively. After the simulation, line 11 can retrieve
necessary system states from TDS and feedback them into the
scheduling simulator for next-round optimization.

This framework can facilitate the seamless integration of
the steady state generation scheduling optimization and the
dynamics simulation to ensure frequency stability under high-
penetration IBR integration. This integration can be achieved
in both open-loop stability checking after steady-state gen-
eration scheduling with dynamics simulation or through the
closed-loop economic dispatch and automatic generation con-
trol simulation. In both cases, the generation scheduling set-
points will be sent to the dynamic simulators to analyze
the frequency performance of the specific operating point,
and the dynamics simulation results will be fed back to the
generation scheduling model as the initial status of genera-
tors. In real-time economic dispatch, parameters such as bus
voltage amplitudes and angles are obtained from the state
estimation of the power grid. These signals are then used in
the subsequent round of real-time economic dispatch. When
transient simulation serves as the grid simulator, the signals
from the simulation can enhance the fidelity. For example, a
detailed secondary frequency regulation study is demonstrated
using the developed framework, showcasing both the economic
results and dynamics performance [16].

Table II shows the scheduling results of virtual inertia
and damping. The columns of Case1 list out the original
synchronous generators’ inertia and damping. The columns
of Case2 list out assigned IBRs’ virtual inertia and damping,
while the columns of Case3 list out calculated IBRs’ virtual
inertia and damping from the RTED-VIS model. It shows
that, when using IBR with virtual inertia scheduling in Case3,
IBR is assigned to provide higher virtual inertia and damping
compared to Case2, where M and D are fixed values.

Figure 10 illustrates the dynamics simulations under gener-
ator tripping at 1s. In Figures 10 (a) and (b), the curves are
from IBR1 or SG1, where ”aux power” refers to the difference
between the assigned power and the actual output power.
The comparison between Case1 and Case2 in both (a) and
(b) indicates that introducing IBR results in a fast dynamics
interaction. Conversely, the comparison between Case2 and
Case3 in both (c) and (d) demonstrates the potential of IBR
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Fig. 10. Dynamics performance validation of VIS through TDS.

to provide frequency support services.
The interoperation between scheduling and the transient

simulators facilitates the development of the scheduling al-
gorithm that involves stability constraints.

VI. CONCLUSION

In conclusion, this paper proposed a hybrid symbolic-
numeric approach-based scheduling modeling framework to
address the scheduling modeling challenges. The proposed
framework has four important features for power grids with
IBRs: extensible scheduling formulation, scalable perfor-
mance, compatible data structure, and interoperable operation
with transient simulators. The AMS framework reduces the
development efforts required for both scheduling modeling
and scheduling-dynamics co-simulation, with demonstration
for IBR integrations. Furthermore, extensive case studies have
shown its accuracy and competitive performance in various
problem types. Case studies also demonstrate the modeling
scheme of IBRs providing ancillary services, as evidenced by
detailed transient simulations. The developed AMS completed
CURENT LTB with the scheduling functionality. Thus, a
full-timescale digital twin for the power grid is achievable
using the scheduling-centric virtual power grid with dynamics
integration.

Consequently, this framework opens up new research op-
portunities. First, the framework enables the development
of scheduling algorithms that can leverage the flexibility of
renewable energy sources effectively and reliably. Second, it
facilitates the creation of a virtual energy market by developing
a market layer, which is essential to devise and test new energy
market mechanisms.
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CODE AVAILABILITY

The implementation of AMS is available on PyPI and
conda-forge as the Python package ”ltbams”, and its source
code can be found at https://github.com/CURENT/ams, and
the documentation is accessible at https://ltb.readthedocs.io/
projects/ams. The source code and cases files used in Case
Studies is accessible at https://github.com/CURENT/demo/
tree/master/demo/ams benchmark.
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